Multiple objective fractional programming involving semilocally type I-preinvex and related functions
نویسنده
چکیده
Sufficient optimality conditions are obtained for a nonlinear multiple objective fractional programming problem involving η-semidifferentiable type I-preinvex and related functions. Furthermore, a general dual is formulated and duality results are proved under the assumptions of generalized semilocally type I-preinvex and related functions. Our result generalize the results of Preda [V. Preda, Optimality and duality in fractional multiple objective programming involving semilocally preinvex and related functions, J. Math. Anal. Appl. 288 (2003) 365–382] and Stancu-Minasian [I.M. StancuMinasian, Optimality and duality in fractional programming involving semilocally preinvex and related functions, J. Inform. Optim. Sci. 23 (2002) 185–201]. 2005 Elsevier Inc. All rights reserved.
منابع مشابه
Optimality and Duality for an Efficient Solution of Multiobjective Nonlinear Fractional Programming Problem Involving Semilocally Convex Functions
In this paper, the problem under consideration is multiobjective non-linear fractional programming problem involving semilocally convex and related functions. We have discussed the interrelation between the solution sets involving properly efficient solutions of multiobjective fractional programming and corresponding scalar fractional programming problem. Necessary and sufficient optimality...
متن کاملDUALITY FOR NONLINEAR FRACTIONAL PROGRAMMING INVOLVING GENERALIZED ρ-SEMILOCALLY b-PREINVEX FUNCTIONS
We consider a nonlinear fractional programming problem with inequality constraints, where the functions involved are ρ-semilocally b-preinvex, ρ-semilocally explicitly b-preinvex, ρ-semilocally quasi b-preinvex, ρ-semilocally pseudo bpreinvex and ρ-semi-locally strongly pseudo b-preinvex functions. Necessary optimality conditions are obtained in terms of the right derivative of a function along...
متن کاملOptimality and Duality for an Efficient Solution of Multiobjective Nonlinear Fractional Programming Problem Involving Semilocally Convex Functions
In this paper the problem under consideration is multiobjective non-linear fractional programming problem involving semilocally convex and related functions. We have discussed the interrelation between the solution sets involving properly efficient solutions of multiobjective fractional programming and corresponding scalar fractional programming problem. Necessary and sufficient optimality cond...
متن کاملSome Integral Inequalities of Hermite-Hadamard Type for Multiplicatively s-Preinvex Functions
In this paper, we establish integral inequalities of Hermite-Hadamard type for multiplicativelys-preinvex functions. We also obtain some new inequalities involving multiplicative integralsby using some properties of multiplicatively s-preinvex and preinvex functions.
متن کاملSome new Ostrowski type fractional integral inequalities for generalized $(r;g,s,m,varphi)$-preinvex functions via Caputo $k$-fractional derivatives
In the present paper, the notion of generalized $(r;g,s,m,varphi)$-preinvex function is applied to establish some new generalizations of Ostrowski type integral inequalities via Caputo $k$-fractional derivatives. At the end, some applications to special means are given.
متن کامل